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ABSTRACT OF THE DISSERTATION

The Interaction of Short-wavelength Internal Waves

with a Background Current

by
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Professor Charles S. Cox, Chairman

ITwo approaches are used to explore the effects of shear on short-wavelength internal

waves. In the first, the Taylor-Goldstein equation is solved exactly.- The solutions show that

the amplitude of partially reflected waves is exponentially small as cj U0, where c is the hor-

izontal phase speed of the short waves and Uo is the maximum mean flow velocity.The solu-

tions slo'reveal the inaccuracy of WKB predictions when applied to a curved velocity profile
V with a minimum Richardson number of order unity.

To investigate internal waves in an inertial current, ray calculations are made. This

second approach reveals that the process of refractive convergence, which includes the critical-

layer interaction as a special case, operates at virtually all phases of the inertial oscillation and

f ., _ix



-affects short waves of nearly all frequencies. It is also found, in contrast to the results of steady

shear analyses, that short waves with phase speeds less that the mean flow maximum can pro-

pagate for several inertial periods without becoming unstable, and conversely that waves with

initial phase speeds of two or three times the mean flow maximum can quickly become

focussed to unstably high amplitudes.

The final section examines the mean flow induced by three-dimensional, low-

frequency, internal wave packets. Rotation alters the character of the flow so that the mean

momentum is not equal to E/c, where, E is the intrinsic energy density. The generation of

inertial waves by the internal wave field, as found by Hasselmann (1970) for a wave field that is

statistically homogeneous in the horizontal, is not predicted by a calculation that incorporates

horizontal variations.
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CHAPTER 1

INTRODUCTION

A challenging feature of the internal wave field is its maintenance of high and uniform

energy levels. A central difficulty arises from our poor understanding of the mechanisms by
which internal waves dissipate. To understand such mechanisms is to understand that portion

of the spectrum where dissipation is most effective: the short wavelengths.

Several factors complicate the analysis of short waves. Because of their small phase

velocities, short waves are strongly refracted by background shears. In the deep ocean, these

shears are produced predominantly by inertial oscillations and therefore vary in time as well as

in space. Short waves are also sensitive to finestructure in the mean density and velocity

profiles (Mysak, 1976), and studies of weakly nonlinear waves predict such rapid time scales

for the interaction of short waves that according to Holloway (1980) they "contradict their

premises".

No single theory can handle all of these processes. In this thesis, we concentrate on

one: the effects of shear, particularly inertial shear, on the propagation of short waves. The

objective is to explore the mechanisms by which inertial currents refract short waves to

unstable amplitudes. The major results are derived from ray-tracing calculations (Chapter 5),

with Chapters 3 and 4 devoted to assessing the accuracy of ray theory over the range of condi-

tions typically found in the deep ocean.

One dissipation mechanism to be examined is the critical-layer interaction. A critical

layer is defined as the depth at which the horizontal, Doppler-shifted phase velocity equals the

mean flow velocity. Within the WKB approximation, the critical-layer interaction appears as a

pattern of converging rays (figure 1.1). There is good reason to suspect this critical-layer con-

vergence as important for short-wave dynamics and dissipation. Many studies suggest that a

narrow critical-layer region that remains clearly definei is connected with overturning and

mean-flow accelerations (Booker & Bretherton, 1967 (hereafter BB); Thorpe, 1981: Koop,

1981- Fritts, 1978), and since short-wave phase speeds typically fall within the range of the

currents through which they propagate (Sanford, 1975; Pinkel, 1981), critical-layer conditions

are frequently satisfied.

However, for inertial shears, we show in Chapter 5 that convergence develops for

short waves with phase speeds two or three times the mean-flow maximum and that conver-

gence is equally likely when critical-layer conditions are not satisfied.
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Figure I.I. Ray trajectories for short waves in an inertial current. The x-component of the
inertial velocity is given by U-Uosin~zsinfr, where 0-2r/h, and f-2/ T, are the inertial
wavenumber and frequency respectively. The velocity U is identically zero at t-O and r-.5 T,
and attains the profile shown on the vertical axis at t-.25 T. Behavior resembling the critical-
layer simulations of Thorpe (1981) begins near t--.l T and z-l.O,, where rays merge.

Rays terminate when the intrinsic energy density E (Chapter 5) surpasses 50 times its ini-
tial value or when the Richardson number drops below one-quarter, conditions which arise in
more than half of the trajectories. Initial conditions include (see Chapter 5 for notation and
assumptions) k/l-.4, ow'/N.-.2, c/Uo-1.O, and JN 2/($ 2 U0

2),4.0.
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These results are unlike those obtained from the Taylor-Goldstein equation used by

BB and in many other critical-layer studies. The Taylor-Goldstein model (or its extension to

rotating fluids (Jones, 1967)) is inappropriate for the description of short waves in the deep

ocean for at least two reasons. First, it is based on the assumption of steady shears, but as

figure 1.1 illustrates, the time dependence associated with inertial currents affects the propaga-

tion of short waves within one-tenth of an inertial period. Secondly, the Taylor-Goldstein

equation predicts a distribution of wave amplitude and intrinsic frequency in the vertical that

applies to, for example, waves produced by steady flow over topography. Short waves in the

ocean's interior, however, may be aligned differently, depending in part on their generation

mechanism and in part on the way they are refracted by time dependent currents. An example

is the case considered by Hartman (1975) and extended to time dependent flows by Thorpe

(1978, Appendix). Here, the spread of "critical layers" over a continuous range of depths leads

to behavior contrasting the BB results.

Before examining the effects of inertial currents on short waves, a review of the BB

and Hartman analyses and a general discussion of critical layers in steady flows is presented in

Chapter 2. Then, in preparation for Chapter 5, we estimate the validity of the slowly varying

approximation necessary for ray theory. This is begun in Chapter 3 by describing the scales of

short waves in the deep ocean and by identifying a criterion for WKB accuracy. In Chapter 4

the magnitude of the energy reflected from strong (but steady) shears is -sessed as a possible

source for the failure of the WKB approximation.

In Chapter 5, ray theory is used to describe the propagation of short waves in inertial

shears. The results are contrasted with the steady-shear predictions reviewed in Chapter 2.

The effect of dispersion and geometrical spreading on the convergence of short-wave packets is

considered in Chapter 5, Section C. Chapter 6 concludes with a summary and discussion of

results.

Parts of the derivations in Chapter 4 and Chapter 5, Section C, are left to Appendices

A and B. In Appendix C, which contains its own acknowledgements and references, we exam-

ine the mean flow and wake produced by a low-frequency wave packet.

Throughout it is assumed that the Vaisala frequency is constant and that the back-

round current is horizontal with vertical shear, as is produced by an inertial oscillation. Time

dependence and rotation are neglected until Chapter 5. The terms background flow and mean

flow are used interchangeably even though the mean flow may itself be an internal wave. The

mean flow also may have a frequency and vertical wavenumber not much less than the short

waves it is refracting but will always be distinguishable by its larger horizontal particle velocities

and infinite horizontal scale.
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The major conclusions are derived from the results presented in Chapter 5. The

results exhibit new ways, not predicted by analyses using steady shears, in which short waves

are focussed to unstable amplitudes. These new ways, grouped with the critical-layer interac-

tion, are referred to as rfracfive convergevnce.

noI' &



CHAPTER 2

BACKGROUND

Two mechanisms proposed for the dissipation of short waves involve refraction by

steady shears: the critical-layer interaction and the shear instability of Phillips (1966) and Hart-

man (1975). These mechanisms are examined in this chapter.

The assumptions of inviscid, small amplitude disturbances in a steady, horizontal

current yield a simple model of a critical layer that is described by the Taylor-Goldstein equa-

tion. Writing u'- (u',0,w') with w'(x,zt) - w(z)e " - ' as the perturbation velocity, k as

the horizontal wavenumber, w as the Doppler-shifted frequency, N as the Vaisala frequency, U

as the mean flow velocity, and c - wo/k as the Doppler-shifted horizontal phase velocity, the

Taylor-Goldstein equation becomes

NI 2 U- 21 0.(21
W_. + (cU)2 + (c-U) k2  -0. (2.1)

The critical layer appears as a singular point in the equation and, provided U. is nonzero at the

critical-layer depth, zc, a branch point in the general solution. A series solution to (2. 1) reveals

that

W - A (Z-Zc)'h+i(Ri-114)'t' + B(z-zc) h- i (Rt- /4), (2.2)

as z - z, where Ri-N 2/(J.2 is the local Richardson number and A and B are complex con-

stants. In the unstratified case, N - 0 and the addition of a small amount of viscosity removes

the singularity. With stratification, both density and momentum become unbounded at the crit-
ical layer, so both viscous and thermal diffusion must be included to remove the singularity.

The result is then a sixth-order differential equation free of singular points for all values of c,

which must be examined in the limit of vanishing viscosity and diffusion. For those who prefer

second-order differential equations to sixth-order ones, two popular alternatives exist, both of

which move the singularity off the real axis into the complex c-plane. Rayleigh damping added

to the momentum and density equations is one way to accomplish this (LeBlond and Mysak,

1978), but the proper method is to set up an initial value problem using Laplace transforms

(Miles, 1%1). The resulting equation need not be solved, only examined to locate the new

position of the singular points.

Once the branch is chosen, reflection and transmission coefficients can be computed

for waves encountering a critical layer. The overreflection of internal waves was first discovered

4K'a d .
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in this way (Jones, 1968). The problem with this type of analysis is that although the vertical

velocity decreases to zero at the critical layer, virtually nothing else does: the horizontal pertur-

bation velocity, the vertical and horizontal displacements, the perturbation pressure and den-

sity, the action density, the intrinsic energy density (see (5.11), and the wave induced shear all

become infinite, indicating the inconsistency of the steady state linear theory. For this reason,

BB resort to an initial value problem.

Despite the inconsistency, much effort has gone into solving the Taylor-Goldstein

equation with various mean flow profiles, density profiles, and boundary conditions for applica-

tion to internal wave propagation and to the stability of disturbances in a stratified fluid when

Ri < 'A In stability theory, solutions with unbounded behavior at the critical layer represent

neutral disturbances and lie on curves in the k-Ri plane called singular neutral curves. Miles

(1963) proves that contiguous to these curves, unstable solutions exist. Since their phase

speeds have nonzero imaginary part, the branch point disappears for real values of U and the

inviscid solution is bounded through the depth where U, and the real part of c match (Gold-

stein, 1931).

When applying the Taylor-Goldstein equation to internal wave propagation, the prem-

ise is that the steady-state results will match those of a nonsingular analysis except for the

region near the critical layer. BB establish that this is so in their initial value problem: "The

important point is that, long before (the linear theory becomes invalid], the flow above and

below the critical layer has settled down to a steady state with a small decaying oscillation super-

imposed and that the steady state is the same as that observed by ignoring the details of the

critical layer, but matching around it ..." The steady solution predicts a reduction in the flux of

pseudomomentum WV across the critical layer by a factor of exp[2r(Ri- 1/4)1.

The dynamics of critical-layer interactions are best understood within the WKB

approximation (Bretherton, 1966). As a group of waves propagates toward a critical layer,

refraction causes the intrinsic frequency and group velocity to decrease. The total action of the

group remains constant, but because it is crowded into a smaller volume, the action density

grows. Though not conserved, the intrinsic energy density E is similarly amplified through

convergence induced by the currents.

A second type of dissipation mechanism for short waves, originally proposed in Phil-

lips (1966, first edition only), is more thoroughly explored by Hartman (1975). Hartman stu-

dies a wave packet in a current of constant shear under restrictions that limit dispersion and

geometrical spreading due to the variations of group velocity of the Fourier components. The

intrinsic frequency w,' (related to the Doppler-shifted frequency W by W, - W' + Uk for k > 0)

and the vertical wavenumber m satisfy
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8_= <<I, L.= << I, (2.3a~b)

where 8w' and 8m are the changes over a distance of one inverse wavenumber, and the sub-

script c denotes the center value for the packet. A fixed observer sees roughly the same intrin-

sic frequency everywhere but sees a wide range of Doppler-shifted frequencies because U

varies over the vertical dimension of the packet. In the steady solutions to the Taylor-

Goldstein equation, the Doppler-shifted frequency remains constant while the intrinsic fre-

quency varies with depth.

The long-time packet behavior differs from the solutions obtained by BB. In addition

to w', u' and E vanish in the limit of large time. While the vertical wavenumber and wave-

induced shear increase, by the time they become sufficiently large to allow instability, E is

greatly reduced.

The cause of the difference is that, in this packet setup, the ray paths are not converg-

ing to a single critical-layer position, or even a critical-layer region that is narrow relative to the

vertical dimension of the packet. Instead, lines of constant phase flatten uniformly in depth as

cw' decreases. Ignoring packet edge effects, which do not alter the conclusions here, this absence

of convergence reduces the equation for the action density A (see (5.8)) to 8A/8r - 0 because

there is only a minor gradient in A or in the group velocity across the packet. accordingly, as Wi'

decreases, so must E.

A similar asymptotic behavior governs the decaying modes associated with the sudden

start from rest in the BB investigation. Why these two limits should agree is explained physi-

cally by BB and mathematically by Brown & Stewartson (1980). An initial perturbation can be

divided into a discrete spectrum, with finite energy in a mode of zero bandwidth, and a continu-

ous spectrum. Given enough time, the disturbances in the continuous spectrum always decay

in a constant-shear flow because each individual component selects its own critical layer. Any

initial convergence ends as the rays (in a WKB sense) become more horizontal.

In Hartman's work, the decay is monotonic because of the initial conditions. These

conditions might arise as the mean flow accelerates from zero velocity through a sequence of

4 -constant-shear profiles (Thorpe, 1978). If, on the other hand, a packet propagates from a

motionless region into a shear layer, both 8&'/w'c and 8w/o/w' are small. Since the spread in

critical layers is also small, ray paths initially approach each other possibly producing large

values of E before decaying. It is therefore not just a continuous range, but a continuous and

broad range of Doppler-shifted frequencies that differentiates Hartman's theory from the

critical-layer theory of Bretherton (1966) and from those theories based on the Taylor-

SL7 A -l
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Goldstein equation.

Although Hartman's analysis applies only to currents with constant shear, an important

implication is not so restricted: the initial orientation of the rays can be as important as the

structure of the currents for short wave dynamics.

An objective of Chapter 5 is to use ray theory to contrast the dissipation mechanisms

reviewed in this chapter with the ways in which inertial currents refract short waves to unstable

amplitudes. We also return to the subject of packet bandwidth in Chapter 5. Section C. The

accuracy of ray theory is first discussed and tested in the following two chapters under the con-

ditions observed in the deep ocean.



CHAPTER 3

SCALE ESTIMATES AND WKB ACCURACY

The analyses of Hartman (1975) and BB apply without restriction to slowly varying

mean flows, but since the goal of this thesis is to incorporate inertial shears, which are neither

steady nor constant in z, progress hinges more heavily on WKB techniques.

In this chapter and the next, an attempt is made to obtain some indication of WKB

accuracy by confining attention to steady mean flows. The results of Hartman (1975) show

negligible amounts of partial reflection and excellent agreement with WKB predictions. The

estimates of vertical wavenumber agree exactly, since the equation

am k! (3.1)
at 8z

holds whether the mean flow varies slowly or not. Action conservation also applies generally,

but the action equation becomes approximate for the case studied by Hartman when A is

replaced by Elw' (Andrews & McIntyre, 1978).

A further step toward validating WKB theory in the present context is to show that

partial reflection is small when the dynamics are described by the Taylor-Goldstein equation.

Wave properties then depend strongly on z for typical oceanic conditions, as the following cal-

culations illustrate.

If the shear is constant, the depth of the turning point z, is related to the depth of the

critical layer zc by

Zr - ZC - Ri' , (3.2)

2Vr

where X, - 2v/k. Equation (3.2) is derived using w - w' + Uk, which may be rewritten as

' k (z - z)

N RilA

For Ri _ 10, a distance of less than half a horizontal wavelength separates the turning point

from the critical layer (in contrast with, for example, LeBlond and Mysak, 1978, figure 41.1).

Another measure of proximity, which is more pertinent to WKB accuracy, is the time

required for a wave group to reach the critical layer. Within the WKB approximation this time

is infinite, but by integrating along a ray to a level just below the critical layer where the

9
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amplitudes and shears are large, a time scale shorter than a few Vaisala periods is predicted and

confirmed by experiment (Thorpe, 1981; Koop, 1981).

When weighted by the local value of w', the dimensionless propagation time T.

becomes (for constant U.)

T. f -'£ Y -w' &

SRig k(R-z) + k(-z)2 I . (3.4)

where Cg3 is the vertical component of the group velocity. A conservative choice of

k(z,-z) - .1 (see Thorpe, 1981, figure 2) and Ri - 4 yields the results cO'/N-.05 (from (3.3))

and T.=7.

The effects of such rapid variation on WKB accuracy can be estimated by introducing

the variable (Olver, 1974)

- fm(z')t', (3.5)
'0

where m is the coefcient appearing in the Taylor-Goldstein equation, (2.1), and zo is an arbi-

trary depth. Substituting f into the Taylor-Goldstein equation leaves

wf1 +w+ - wm. 0. (3.6)wff+ +m2 8z

The WU method attempts a solution for w in terms of an asymptotic expansion. To

leading order, w is given by

w - T e (3.7)

provided

<< 1(3.8)

When the shear is constant, or the term U/(c-U) in m is negligible, this becomes

I I << , (3.9)

.. .. . . . . .

RO 2
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which is satisfied whenever Ri is large except near turning points. A similar constraint on the

Richardson number is derived by Hartman (1975).

The criterion (3.8) emphasizes that the validity of (3.7) depends on the fractional

change in m, not m itself, and that the fractional change must be small over a distance of l1r,

not a vertical wavelength. It can also be shown that the expansion is doubly asymptotic: the

error approaches zero as g - 0 for fixed z, or as z - zo for fixed A (Olver, 1974). Stated

another way, the solution (3.7) is accurate through a nondimensionalized (by m) distance of

the order of /I. Since an infinite number of vertical wavelengths separate zo from the critical

layer, the WKB approximation must eventually break down (Bretherton, 1966).

Judging from Sanford's measurements, the condition (3.9) may be violated frequenmly,

even away from turning points. Because the solution for w given by (3.7) is the first term in

an asymptotic expansion, the result could be improved by working out higher order terms. If

these terms are small relative to the first, it would be tempting to conclude that the first term

alone is adequate, this reasoning may cause troubles, however, in dealing with reflection. Since

the energy reflected by smooth changes in the medium is exponentially small as A - 0, it

never appears at any order in the expansion (Meyer, 1980). Higher order terms represent small

changes in phase and amplitude but never generate, for example, downgoing waves from upgo-

ing ones.

The process of comparing higher order terms to check the validity of the WKB method

therefore has limitations. Only as I - 0 is the error in an asymptotic expansion the order of

the first term excluded. Partial reflection may& account for the difference between a solution

accurate asymptotically and a solution accurate for finite IL.

If



CHAPTER 4

REFLECTION

A. Theory

The circumstances in which a smooth velocity profile induces partial reflection are

examined in this chapter by calculating exact solutions to the Taylor-Goldstein equation that

can be interpreted as traveling waves as z - ±00. We choose as a convenient mean flow

profile

U - Uotanh~z, (4.1)

for which the Taylor-Goldstein equation is

N  2,010I-U) _k2}w-O. (4.2)1= (cU), C-U

Introducing the dimensionless quantities

U c j N 2  k
U0  U0  pU

and transfortning the dependent variable from z to U. turns (4.2) into a Fuchsian equation

with four singular points:

2(U. U. 1- 2)W U.UV. __U.2 W u. + (C._U..)2(l_F;.)2 - (C._U.)(1_-..) (1_(./)2 I - 0.

(4.3)

The singularities are located at U. - -1, 1, c., and oo. Any equation with four regular singular
points can be transformed to Heun's equation by a two step procedure. The first step is to

bring the singularity at U. - -I to U. - 0 so that three of the singularities are at 0, 1, and oo

This is achieved through the transformation

(U.+I)
2

Defining

12
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(c.+1)

2

equation (4.3) becomes

Wu ,u+F +- T] WU, ++zU, t 16c, 4 c

Uj-I 1 161-0 1) 4 - (U1-cl) 16c 1 -c 1)J - 2U, + i w-O.

(4.4)

The solution to (4.4) is represented by the Riemann symbol

0 1  c1 00

W- 4iAt iL2 lh(l+iv) 2 U , (4.5)
[- i s , ,(1-iv) -l1

where

2t 4c 2J?-42 - a (4.5a)

is2 - 4(1-c,) 2  }'A (4.5b)

j 1  (4.5c)1'"4c (1-cj)'

The exponents of (4.5) govern the behavior of the solution at each of the singular

points. For example, if A and B are complex constants, then

w - Ae 1* + BUI

I Ae" 'I n U, + Be - i tlnU1

as U, -O. In this limit

I 8 tlnUl 1 Ast,Sz

I
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so ILI is identified as the dimensionless vertical wavenurnber as z -- 00. Similarly, IA2

corresponds to the dimensionless vertical wavenumber as z - +0

The second step in putting (4.3) in the form of Heun's equation requires a transforma-

tion of the dependent variable w by

W,- U1" (U-)i2 .IC)'hIW (4.7)

Inserting this into (4.4) leaves

+ z. -~ _ +2,+2/2+3 + WV + -NU 1-b.0
WyVU, + U1  (JI-l + 7C U1(U1-1)(U 1-c.) W

(4.8)

where

a +i + 1142 + (4.1)I

8-1h 1+ 4A2 (4.12)

b I 1 +A (4.11))

hQA~+iP)Q1+igLt+'hQ1-iv)c,-D) . (4.13)

$ (In defining the parameters in (4.9) to (4.13), The notation of Snow (1942) is followed as

closely as possible.) The Riemann symbol is now

1 0 1 ct;, ,
WI- 1-212 0 0 a ,(4.14)

-2jI- 2 i4L2 -iv

Equation (4.8) is Heun's equation. That solution which is analytic at U1-0 (i.e. has

zero exponent) is known as Heun's function and is given by the series

F(cI,b;&,4Lv,8;U,) - a. (4.15)
M-0O

*1M
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A three-term recursion formula determines he a,'s:

a01 , - --
YCl

and

a,+2(n+l+Y)C -

au,+tf(n+1)2(1+c,) + (n+l)(y+-l+(+ -8)ct-b) a, (n +3) (n+ ) (4.16)

Drazin (1958) derives an equation similar to (4.8) with c - 0 to study shear instability
(see equation (23) of Drazin's paper). Drazin notes that if w, is constant, a solution that

satisfies the boundary condition of w, - 0 as z - :±t is obtained if

Z;U't - b - 0 . (4.17)

In Drazin's problem, b is zero and N can never vanish, so, by equating to zero, the singular

neutral curve

J - a 2(1--a2) (4.18)

is found.

Here we seek solutions to (4.8) that represent an incident plus a reflected wave as
z---o (Ut - 0)

w(z) - e + Re"'l  (4.19)

and a transmitted wave as z - +-0 (U, - 1)

w(z) - Te-"'p . (4.20)

The amplitude of the incident wave in (4.19) has been set equal to unity, and the complex con-

stants R and T are related to the fractional reflected and transmitted energy densities by

ER - IRI2  (4.21)

ET-IT1(a 2 + A22) (4.22)
/A2 1 M 2)
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The analytical continuation formulae necessary to determine R and T are given in

Appendix A; however, the resulting expressions (A4) and (A5) in terms of Heun's func-

tions are not very useful. A simpler and more interpretable form can be derived if the number

of singularities in (4.3) can be decreased by one, because Heun's equation then reduces to a

hypergeometric equation. One way to accomplish this, valid in the limit of J - o or c I Uo

is to ignore the V= term in the Taylor-Goldstein equation, which is responsible for the singu-

larity as U. - co. Under this assumption, the equation for I R I derived by van Duin & Kelder

(1982) and converted to the present notation is

cosh2(' - ) + sinh2 m(Az- 1)
IR 12 - 2 (4.23)

cosh2('.) + sinh 27r(s 2+lt 1)

B. Discussion

Two limiting forms of (4.23) follow easily. The first is the limit of large Richardson

number. If this is achieved by letting N - oo or -- 0, then 1A,/ z, and P, tend to infinity,

leaving the approximate solution

IRi - e-2wrPL (4.24)

(van Duin & Kelder, 1982). If instead, the Richardson number is increased by letting UO - 0,

(4.24) still holds provided a short-wavelength approximation, 27r/A >> 1, is made. This case

illustrates the exponentially small magnitude of the reflected energy in the WKB limit, as men-

tioned in Chapter 3.

The second limit of interest is c I U0 . By again imposing 21rJ41 >> 1, the relationship

(4.24) is obtained. Partial reflection is therefore unimportant for waves that just miss satisfying

critical-layer conditions. Mied & Dugan (1975) reach the same conclusion from a numerical

integration of the Taylor-Goldstein equation.

When a critical layer exists within the shear layer, partial reflection is again unimpor-

tant, except at low Richardson number, where waves may be overreflected. BB attribute the

reflected energy appearing in their results not to partial reflection, but to reflection from the

discontinuity in their velocity profile. This energy is derived from waves that pass through the

critical layer twice, once before and once after reflection. Each time the energy flux is dimin-

ished by an exponential factor (the BB transmission coeffient), yet the discontinuity still

accounts for the major portion of reflected energy.

N I
,.

.'- V .~
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It is of interest to see whether a symmetric profile produces the same behavior. One

such profile that approaches constant values as z - ±oo is U - Uosech2(pz). The resulting

Taylor-Goldstein equation can be transformed into a Fuchsian one by the same change of vari-

able, V - tanh(oz), that is used for the tanh profile. Here, though, the number of singularities

increases to five (except when c - U0 which leads to one irregular and three regular singular

points.) Rather than proceeding by the method outlined in Appendix B, it is simpler to model

the entire coelficient of the Taylor-Goldstein equation

m 2 - N2  + U= -Ik2 (4.25a)

(c-U)2  (c-U)

by

m2 
- Ar Bse-h 2(13z) (4.25b)

with A,B > 0 (Epstein, 1930). Neglecting the term U=/(c-U) in (4.25a) we can solve for U

to obtain

U -c - NU - -N(4.26)
(k2 + A + Bsech 2#z)(.

The form of the reflection coefficient depends on the nature and position of the zeros

and singularities of m2 (Meyer, 1980). For the model (4.25) to be appropriate, the zeros must

resemble classical turning points and the singularities must resemble critical layers. The

coefficient m vanishes at

z - 1 ± log(- ) (4.27)
2 2B+A

while the singularities of m lie at z - ± iw,/P. A Taylor expansion verifies that the proper lim-

its result: m2 has simple zeros, and its only singularities are second order poles. (Note that the

antisymmetric model of Epstein (1930), m2 - A + Btanh (z) gives a first order pole at the

singularity and is therefore inappropriate for a stratified shear flow; it is pertinent, however, to

unstratified problems, including Rossby wave - mean flow interactions.)

Epstein obtains

I R I' sin2( rd) (4.28)

sin 2(rd) + sinh(wr--.)

for the reflection coefficient, where

d -h - 1h (I + BI#2) 'V (4.29)
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and

a - A"Y/. (4.30)

For the three cases

(i) 8- 0,
GOi B - O, 7rA'h/p >> 1, and

(iii) B -" o

takes the approximate form

fRI - sin(rd) e- 1Ah/, . (4.31)

The first two limits correspond to Ri - o and the last limit to c - U0. As for the case

U - U(tanh(Sz), the reflected energy is exponentially small for waves that have phase speeds

barely exceeding the mean flow maximum.

A final remark concerns the validity of the WKB approximation. Although partial

reflection does not impair the accuracy of WKB solutions in the limit of J - -c or cj U0, WKB

approximations fail when applied to a curved velocity profile with low Richardson number.

Then the term U/(c-U) dominates the others in the coefficient of the Taylor-Goldstein equa-

tion. An example depicting the importance of this term for a tanh velocity profile is plotted in

figure 4. 1. Within the WKB approximation, m2 increases monotonically with depth because the

shear is always positive, but what the approximation predicts to be refraction toward low fre-

quency turns out to be refraction toward a turning point, since the exact value of m2 becomes

negative where the curvature term gains influence. It appears that this concern and not partial

reflection is the major drawback in applying WKB techniques to flows described by the Taylor-

Goldstein model.

However, the application of the Taylor-Goldstein model to short waves in inertial

currents has severe limitations, since the approximation of steady shears is valid only for times

that are short relative to an inertial period. (Note that in the results of figure 1.1, the time

dependence of the currents becomes important before one-tenth of an inertial period has

elapsed.) This restricts the model's utility to waves of high intrinsic frequency. Another factor

enters though: the vertical gradient in the Doppler-shifted frequency w. If this gradient is large,

as in the problem of Hartman (1975), the Taylor-Goldstein model is inappropriate even for

short times.

Nevertheless, the Taylor-Goldstein equation is useful in testing WKB accuracy. It pro-

vides the Richardson number criterion given in (3.9) and an indication of the importance, or

unimportance, of partial reflection. Such results are difficult to obtain from analyses that include
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3 3-
iI -2 2

Bz 0 0

-2-2 -2

-0.8 0.0 0.8 - 0 .2 ' -1.5 .0 I.5

U/uo2 -m-2 am/az

Figure 4.1. The coefficient of the Taylor-Goldstein equation. The asymptotic predicitions
(dashed lines), obtained by neglecting the curvature term U/(c- U) in the Taylor-Goldstein
equation, are compared with the exact values (bold lines). The calculations are made for
J-2.0, c/Uo-3.0, (w//N)..-.3, and k/ P-.. Asymptotic theory does not anticipate the turn.
ing point just above Pz -0.

S.-.-... .....- __.. . ._-_-_____,
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time-varying shears, although some progress along these lines can be made by extending
Hartman's theory to a time-dependent current of the form U. - U. (f only) (Thorpe, 1978).



CHAPTER 5

SHORT-WAVE PROPAGATION IN AN INERTIAL CURRENT

Larse-amplitude inertial oscillations with vertical wavelengths of a few hundred meters

or less are found wherever measurements are made in the ocean. They constitute the major

shear throughout the water column, strongly refracting short waves and creating the possibility

for short-wave -- critical-layer interactions.

The effects of inertial currents on the propagation of short waves and on the evolution

of critical-layer encounters are analyzed here using ray theory. Strictly speaking, the introduc-

tion of time-varying shears eliminates singularities associated with critical layers; at issue, how-

ever, is whether behavior resembling the BB predictions can still be achieved and, if so, which

conditions favor its occurrence.

Rotation, which has previously been ignored, is introduced in this chapter. Jones

(1967) analyzes the critical-layer interaction by modifying the Taylor-Goldstein equation to

include rotation. He finds that rotation introduces two additional singularities at the depths at

which w' - :tf, where (a' and f are the intrinsic and inertial frequencies respectively. He also

finds an exponential decrease in the vertical flux of horizontal pseudomomentum (Andrews &

McIntyre, 1978) across the singularity at w'-f. However, the result most relevant to the

present purposes is that, in a rotating fluid, critical-layer convergence and the shear instability

predicted by Hartman (1975) occur as a' - f. (In Hartman's theory, this is a WKB result,

since w,' is meaningfully defined in his analysis only in the WKB limit.)

We take as a simple model of an inertial current the standing wave

U - (U, V,0) - Uosinz(sinft,cosft,O) (5.1)

with wavelength Xi - 2ir/18 and period T - 2r/f, We consider short waves of wavenumber

K - (kOm) and assume that the short-wave amplitudes are independent of horizontal posi-
tion. Then the y-component of the inertial velocity V does not enter into the ray equations

and therefore need not be considered in the following calculations.

The short waves have intrinsic frequency w.', Doppler-shifted frequency w, and since k

is assumed positive,

- a' + Uk (5.2)

The group velocity of the short waves is C, - (C.,1 ,C,), with

21
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CS1 - a 00I2-f 2  (5.3a)

(N2-f 2) k2mC3 -- 1h (of (k 2+MI)2 ,(5.3b)

and as in previous chapters, c' and c are the intrinsic and Doppler-shifted horizontal phase

speeds respectively.

The minimum Richardson number of the inertial current, J, and N/f are set to

J N 2 -4 N 50 (5.4a,b)

The magnitude of J represents a compromise between the measured values of Sanford (1975,
figure 12), which fall within 1 and 4 ninety percent of the time, and concerns for WKB accu-
racy (see (3.9)). The value for N/f is appropriate to a depth of roughly 1000 meters at midla-

titudes.

A. Ray Theey

Writing the dispersion relation as

k k2N2+M2f2
,(Z't) - fl(K,z,t) - k 2+m2  + kU (5.5)

the equations to be integrated along rays defined by

A -c + u , . L + (cg+U) (5.6ab)

are (Garrett, 1968)

- A (5.7)

dA a

--A AM-f,,.,, + fl., (5.8)

where A is the wave action density. We have adopted the notation of Hayes (1970), using fl
and denoting partial derivatives by subscripts when the independent variables include K as well

as z and t. The variable x enters only in the equation for the x-component of the ray path.

'I,
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In all other equations, d/dt can be reduced to 818t + C438/Oz.

Rather than integrating along adjacent rays to determine 8m/8z in (5.8), Hayes sug-

gests advecting the value of Om/Oz along the single ray defined by (5.6). This introduces

another equation

d ~ I -f -2 - I L I
(see Hayes (1970), equation (19)). From the dispersion relation, we find that

n.. - 0, (5.102)

1 - (S1l3b

where in (5.10c0

a - k2N2 + m2.,O2  (5. 1Od)

b-k 2 +M 2 
.(5. 1 e)

From A, we compute the intrinsic energy density E, which is given by

E - - ' W2 + v 'I + w'2 + '/N) (5.11)2

-A u'(5.12)

and which satisfies the ray equation

It marks the energy density measured by an observer moving with the local velocity of the

mean current.I' We also compute the pseudoenergy density e, related to A and E in the WKB limit- by

e A E,(5.14)I The ray equation for e

g3 C,3 (5.15)

w dt
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shows that e is conserved whenever w is constant along the ray, or equivalently, whenever the

medium is time independent.

In the results presented in this chapter, E is emphasized over the quantities A and e

because it provides the best indication of whether or not the waves reach large amplitudes. In

this respect, A has the disadvantage of reflecting changes in W' in addition to amplitude. In the

case studied by Hartman (1975), for example, A remains constant as the wave amplitudes grow

or decay. A similar concern holds for e, which may even be zero or negative.

To calculate the exact Richardson number as a function of time and depth, the ampli-

tude and phase of the short waves must be specified. If u' and v' are the horizontal perturba-

tion velocities and p' the perturbation density, the Richardson number can be expressed as

N2 + 
Ri -PO :8. (5.16)

+2

Letting u'- uocosO, (5.16) becomes

+ _L W
(cosz): 1 ill  IR1- . (5.17)

1+ 2(cososinft+.Lsinctcosft) + V2(sin240+ L " t24,)

where

UO C' M
"V' C' U0 / cos'Z (5.18)

The quantity, uric', is set to .2 at the initial coordinates and computed at later times from the

WKB relationship

E- ~,~u~ 1 + f2 + f + (2 519'
0#2 M2

with E obtained from the solution for wave action, (5.8). The minimum and maximum

Richardson numbers are determined by running through 50 values of 0 at each time-step.

Equations (5.6)-(5.9) are integrated using the variable-order method of Bulirsch and

Stoer (1966). As a check, the formula for the intrinsic frequency is included:

de__ k - (5.20)
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The integration ends if E exceeds 50 times its initial magnitude or if Ri < 1/4. We

shall refer to this process, by which unstably high amplitudes are attained, as a focussing or

convergence. Once started, focussing typically proceeds at a rapid rate, so the final values of

(o, x, and t are seldom sensitive to the cutoff value for E. In addition, the focussing of rays is

the sole cause of instability in all cases presented in this chapter: examples of shear
intensification in which the rays remain parallel, as envisioned by Hartman (1975) and Phillips

(1966) for steady, linear, mean flows, were never found.

B. Results

In figure 5.1, a ray calculation begins at z - 0, t - 0 with a Doppler-shifted, horizontal

phase speed of .6UO. The ray path would head asymptotically toward a critical layer near

z - .IX if the mean flow was steady and maintained at U - U0sin(fz).

Instead, as the short waves propagate upward, the inertial wave accelerates causing

c/Uo to double from .6 to about 1.2 (figure 5.1b). At the same time, refraction reduces the

intrinsic frequency to less than 2f (figure 5.1c). Despite the increase in vertical wavenumber

(figure 5. Id), there is no tendency for shear instability (figure 5. Ij) because the intrinsic energy

density E is greatly reduced (figure 5. lh) and because the mean shear is low near the level of

one-quarter inertial wavelength.

Since internal waves of low frequency and high wavenumber propagate with small

group velocity, vertical progress is slowed. Caught in the region of maximum currents, they

are swept backwards in the decelerating phase of the inertial oscillation (figure 5. la). A full

inertial period elapses without any sign of instability or wave growth. It is not until the waves

begin io emerge from the region of maximum currents that E intensifies (reaching 50 times its

initial value before the calculation is stopped); however, at this time, the intrinsic frequency

and group velocity are increasing (figure 5.1c), which means that refraction is in a direction

opposite to that required for a critical-layer interaction. The strong, time-dependent shears

have therefore focussed an accelerating group of short waves to unstable amplitudes at a depth

where critical-layer conditions are not satisfied.

The ability of inertial currents to focus short-wave groups that are accelerating will

appear in many of the results presented in this chapter. It is a type of convergence seldom con-
sidered by steady-shear analyses. The reason is that these steady analyses generally assume or

lead to solutions in which the Doppler-shifted frequency o is independent of depth. Examples

include the study of waves generated by flow over topography or by shear instability. In the

steady-state case, with w constant, the ray equation for A takes the simple form,

AC 3 - constant, so A intensifies only as the wave group decelerates.
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(a) (b) (c) (d) (e)

U/ _Cg3 X102

2

04 - 0 0 5 6 o -5 0 .5
X/X.i -m/P fW2 amlaz

Mf (g) (h) (i) (j)
I 4w,

0.4- 3A ad d(Nt)
0.4 6C, 3

0.22

0 I 2 -. 2 0 .5 1 01000

A RI

Figure 5. 1. Summary of a ray-tracing integration for short waves propagating through an iner-
tial current given by (5.1). All plots have the same vertical axis. At the initial time, t-O,
.'/f-6, and c/Uo-.6 Time is marked parametrically in (a) by dots along the ray path every
quarter-inertial period. Minimum and maximum Richardson numbers (computed from (5.17))
are shown in (j) by dashed and bold lines respectively. In addition to the graphs referenced in
the text, the following are included:

(e) m-28m/Sz, provided as ar indication of WKB accuracy,
(g) the vertical fluxes of A and e, and
(i) the terms contributing to changes in E (see (5.13)).

Note that convergence takes nearly Ph inertial periods to occur, and that at this time, W' and
Cg3 are increasing.

I
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(a) (b) (c) (d) (e)
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Figure 5.2. Same a for figure 5.1 except that a steady mean current has been added to the
inertial oscilllation. The total background velocity in the x-direction is: U-Uosinozsinft+ z,
where r--.OOIN2 .
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In the example pictured in figure 5.2, all the initial conditions are the same as in figure

5.1, except that a linear, steady mean flow of the form U - rz has been added to the inertial-

wave background. This is intended to model the shear of a geostrophic current or mesoscale

eddy. The parameter r is chosen such that the Richardson number of the steady flow is 1000,

but the results are similar for a Richardson number of 100.

With this modification, the waves are refracted to small vertical wavelengths, but there

is no tendency towards shear instability such as that which develops within a few Vaisala

periods in Hartman's results. The Richardson number never gets near one-quarter, in part

because of the curvature of the velocity profile and in part because 8 U/8z vanishes twice every

inertial period. The short waves are carried back and forth by the currents for nearly four iner-

tial periods.

Unlike the previous two cases, short waves originating near the depth z - .5x, find

conditions resembling those of critical-layer interactions (figures 1.1, 5.3). These waves

encounter a decelerating mean flow with positive shear (8 U/Oz > 0), similar to the situation in

which Thorpe (1981) generates critical layers.

Despite an initial short-wave phase speed of 2 Uo, the convergence of ray paths shown

in figure 5.3 develops well before the inertial current attains its maximum velocity, and conver-

gence continues at depths where the shear becomes negative and thus where critical-layer con-

ditions cannot be met; moreover, for the calculations summarized in figure 5.3, the value of c

is greater than 2 Uo at the time of focussing and is therefore more than twice the local value of

U.

That critical layers need not account for the majority of convergences predicted by ray

theory is emphasized by figure 5.4, which summarizes the results of 576 sets of ray-calculations.

(The symmetry U(z,t) - U(z + .k/2,: + T,/2) for U given by (5.1) reduces the number of

independent cases by a factor of two.) The initial conditions cover twelve times evenly spaced

over an inertial period, twelve depths evenly spaced over an inertial wavelength, and four

intrinsic phase speeds: c'/UO - .2, .6, 1.0, and 1.4. The initial intrinsic frequency is held fixed

at (a'- .2. Each integration continues for two inertial periods or two inertial wavelengths

unless convergence causes the intrinsic energy density E to intensify (see the final paragraph of

section 5A). If this occurs, the integration stops and the final time and depth relative to the

phase of the inertial oscillation are marked in the figure.

The shear is positive at the times and depths falling in the hatched sections of the plot.
Although critical-layer interactions are restricted to this area, to classify all the cases in the

hatched sections as critical-layer interactions is to include behavior that differs substantially
from the results of BB and Thorpe (1981): sudden increases in E occur at intrinsic frequencies

I
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2.0

0.5

00o 0.05 0.10 0.15 0.20 0.25

t/Ti

Figure 5.3. Ray trajectories in an inertial current given by (5.1). At t-0, c/UomInO, k/p -2.
and wuYN-.2 The dark band extends through regions of positive and negative shear and
represents a convergence band where 13 of the 40 initial rays terminate. The value of VI
increases from zero at t-0 to the profile shown on the vertical axis at t-.25 T,.
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Figu~re 5.4. The location of convergences. Plus marks indicate the depth relata/ it o an inertial
wavelength A, , and the time relative relative to an inertial period T, at which the ray calcula-

tions predict convergerce (E>5OE(t-O) or RI< A). The figure displays only the phase of the
inertial current at which this happens. A ray which reaches t-1.5T, and z-1.?5X,, for exam-
ple, is given the coordinates (.5,). Cases in which the short waves propagate for longer than
two inertial periods or two inertial wavelengths without becoming focussed are not plotted. The
initial values of c'7Uo are .2, .6, 1.0, and 1.4. Of 576 cases, 434 points are plotted (75% of the
total) with 246 points falling in the hatched region, where critical-layer interactions are possible.

. ..... -- .
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tO0 +
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0.6 ++

z +

0A. +

0+ ++ ++++ ++ + +
+ +e *# x

0.2 +

.0 0.2 0.4 0.6 0.8 1.0

t/T

Figure 5.5. Same as for figure 5.4, except that the initial values of c'IUo are larger, ranging

from 1.8 to 3.0. Of 576 cases, 138 points are plotted (24% of the total) with 83 points falling in
the hatched sections.
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much greater than f, at times when the current is weak everywhere, and at depths where the

mean shear vanishes.

The number of cases that can be attributed to a critical-layer interaction depends on its

definition. Let a critical-layer interaction be one in which wave amplitudes intensity as w' - f
and, in the WKB approximation, as C.3 - 0. Then only 10% of the cases plotted in figure 5.4

fit this definition if by o)' - f, we mean that o' < 5f when focussing occurs. This increases to

25% if the condition changes to w' < 10f.

Higher percentages follow if a linear mean flow is added, as in figure 5.2, or if the ini-

tial intrinsic frequency is reduced; however, as long as c/U 0 _ I at the initial position, the

merging of rays continues - be split between shears of positive and negative sign.

At higher pha, speeds (figure 5.5), the number of convergences is reduced. Again,

convergence is not limited to regions of positive shear nor to waves of low frequency. The final

value of (a' falls below its initial value of 10f in less than half of the cases plotted in figure 5.5.
We also note that since a high intrinsic frequency corresponds to a low ratio of m/k. focussing

affects more than just the shortest vertical wavelengths. If focussing develops when W' , l0f,

for instance, it takes a horizontal wavelength of only 500 meters to give a vertical waveiength

of 100 meters.

The value of Om/8z is one of several initial conditions left unchanged so far. It has

fen set to zero, indicating that there is no initial convergence to a bundle of rays. To test

whether the results depend as critically on this parameter as they do in the case of steady

shears, where the value of 8m/8z accounts for the difference between the Hartman and BB

solutions (Chapter 2), the following example is considered.

Suppose high frequency waves can propagate a vertical distance of one or two inertial

wavelengths before the current changes markedly. If the waves are generated, for example, by

shear instability, then w is constant and 8m/Oz can be derived from the dispersion relation.

For short times,

am Om 8W'
&zua' 8z

_ _ _ N I l 82-!2  U(521)
(W I _f 2)312 (N2-€o'2)1/2 8Z

This is used as an initial condition; for longer times, o is allowed to vary and the system

evolves according to (5.6)-(0.9).
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Figure 5.6 contrasts this initial state (figure 5.6a) with one in which (a' is independent

of depth (figure 5.6b). The integrations begin at t - 1/ T with &0/N - .2 and c/Uo - 1.4 in the

former case and w'N - .2 and c'/Uo - 1.4 in the latter case. The rays originating from

.4 < z < .75 in figure 5.6& illustrate that divergence in one region may strengthen convergence

in another. Whether the amplitudes increase in a bundle of rays is thus as much a question of

where the rays end up relative to the phase of the inertial oscillation as the degree of conver-

gence with which they start.

Integrations based on (5.21) and run at 12 starting times covering an inertial period

show patterns similar to those plotted in figure 5.5. In part this is because the differences

between the constant-w and constant-o' initial conditions decrease as the magnitude of the iner-

tial current decreases; however, even when the current is strong, the difference in the location

of instabilities relative to the phase of the current tends to lessen as the calculations proceed

beyond an inertial period.

The sensitivity of the ray solutions to changes in k/ is shown in figure 5.7, which

contains the ray trajectories for the interval between t - 0 and the time indicated in the plots.

The value of k//p labels each curve. The trajectories for k/S - .40 in figures 5.7a,b correspond

to those in figure 5.1a and in figure 1.1 (with z - .3j at t - 0) respectively. The former is an

example in which convergence is not associated with critical layers, while the latter models the

critical-layer interaction as closely as any of the results shown thus far.

The final spread of trajectories in figure 5.7a is less than haf a vertical wavelength of

the short waves (approximately .2,i at t - 1.4T,), but the solutions are more sensitive to varia-

tions in k/P than is revealed by the trajectories. For k//$ - .44, .40 convergence develops at

t - 1.47T, while for k//P - .38, .36 E normalized by its initial value remains small for over 2/2

inertial periods. This dramatic change in the intrinsic energy density for slight changes in the

independent parameter is a characteristic feature of the ray solutions.

In figure 5.7b, convergence occurs in all three cases at approximately the same depth
and time (t - .1 T) despite a spread of ±25% in horizontal wavenumber. This suggests that

convergence in this example is not limited to narrow-banded wave packets. The effects of

bandwidth are considered in the next section.

C. Dispersion and geometrical spreading

Dispersion results from the dependence of Cg on the magnitude of K, while geometri-

cal spreading results from the dependence of C. on the direction of K. These processes are
analyzed in this section using ray theory to determine their effects of the convergence of local-

ized, short-wave packets.
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The importance of dispersion and geometrical spreading depends on the wavenumber

bandwidth of the packet. Bandwidth has been ignored thus far, under the premise (verified

below) that the results capture the essential features of at least narrow-banded wave packets.

With bandwidth neglected, changes in the action density A have been attributed entirely to

refraction, as though all the energy resides in a single value of K and wi at each depth and time.
A finite bandwidth is implied, however, since the action propagates at the group velocity, not

the phase velocity.

Ray theory can be used to study the processes of dispersion and geometrical spreading.

Suppose, for example, that a source localized in space and time generates a broad-banded

wavefield, as in the "seas" of surface waves. As the Fourier components spread due to their

difference in group velocities, as in the "swell" region, a gradient in K develops. Strictly speak-
ing, all wavenumbers are present everywhere, but to a first approximation, one wavenumber is

dominant at each position with all others destructively interfering. This gives rise to a nonzero
VK even if the medium is uniform, which when substituted into the ray equation for the

action density A describes the changes in packet shape resulting from dispersion and geometri-

cal spreading. Thus bandwidth information enters through the value of VK.

This discussion is exactly the physical justification for the method of stationary phase.

and, in fact, ray theory can be used to derive the stationary-phase result

A - , (5.22)

for large t, where n is the number of spatial dimensions. To demonstrate this, we consider the
simple case of one-dimensional propagation in a uniform medium. (The generalization to n

dimensions is given in Appendix B.) Since the wavenumber k is then conserved,

k - k(x-Ct) , (5.23)

where C. is the group velocity. Implicit differentiation with respect to x leaves

ax xo ax

i 1 I I 1+: [Lk J0!L . (5.24)

where (BI/Wx)o is the value of 8k/Ox at t- 0. Substituting (5.24) into the one-dimensional

action equation

M -A A 8k (5.25a)

dt ax

"Wt~r
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(see (5.8)) gives in the long-time limit

d4 _ A (5.25b)
dft t '

and leads to the asymptotic behavior given by (5.22) provided fi k, Ok/Ox > 0 at t- .

The advantage that ray theory has over the method of stationary phase is that it is

easily extended to nonuniform media. Complications arise because in general 8k/Ox is not

known analytically and because in three dimensions, (5.24), or (5.10), must be replaced by the

system of equations

dt

(Hayes, 1970). (Only six of the equations in (5.26) are independent since the tensor VK is

symmetric.) The components of fiKK, which are listed at the end of Appendix B. include flkt,

f(d, ilk and so forth, and similarly for 0,,K and fl,,.

We use (5.26), the action equation in three dimensions

dU--- A VK: LA , (5.27)'ft

and the ray equations (5.5)-(5.7) to include the effects of dispersion and geometrical spreading

with those of refraction.

The results are presented in figure 5.8, which shows the intrinsic energy density £

normalized by its initial value as a function of time for several ray calculations. The number

that labels each curve, which for later reference we call y, has the same magnitude as each of

the terms

I am I 8k Ok Ok 81 1(2
2 Z ' _ Iz i' Iy' Bz' By ,: (5.28)

and has positive (negative) sign when the rays are initially divergent (convergent). For initial

divergence (convergence), the sign of each component of VK is chosen to have the same

(opposite) sign as the corresponding component of fiKK, so that all nine terms contributing to

the dyadic product in (5.27) have the same sign. This maximizes the effects of dispersion and

geometrical spreading.

In figure 5.8a, the initial conditions are those used in figure 5.1 except for the value of

y. (The bold curve corresponds to the calculation in figure 5.1.) For y > 0, dispersion and

geometrical spreading are important for times less than about half an inertial period. Refractive
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convergence becomes the dominant process after 1.2T, and the results illustrate the explosive

growth in E that this convergence produces. As in nearly all the.ray solutions summarized in

this chapter, there is no question as to when focussing occurs.

In the case where y - -. 5 in figure 5.8a, the rays are so sharply focussed at the outset

that unstable amplitudes are shortly reached. In the Taylor-Goldstein model, this degree of

convergence is produced by a current with low Richardson number (see (3.9)). In the present

context, the focussing arises because the initial conditions place Fourier components with slow

group velocities ahead of those with fast group velocities. The ray equations then predict con-

vergence without background currents.

The second example (figure 5.8b) shows the effects of dispersion and geometrical

spreading in a situation resembling the critical-layer interaction. Here the initial conditions

(except for the values of y) are the same as for the ray that begins at z - .3k, in figure 1. 1.

The wave group thus encounters a decelerating current with positive shear, as in the experi-

ments of Thorpe (1981). In the case with no initial convergence (the bold curve in figure

5.8b), unstable amplitudes are reached after only one-tenth of an inertial period.

For y - :t.1 this result does not change appreciably, so the case of small bandwidth is

similar to the case of zero bandwidth. This agrees with the conclusions of BB, who claim

(page 535) that "...a wave packet clustered around a single wave-number k0 does not behave

qualitatively differently from a single wave-number...", and the result is expected from the

laboratory study of Thorpe (1981). In Thorpe's experiments, a rough estimate of the

bandwidth in horizontal wavenumbers 8k/k is 1/n,, where n, is the number of horizontal

wavelengths to the corrugated lower boundary of Thorpe's tank. Thorpe uses the two values

n, - 8 and n, - 16. In addition, there is the bandwidth in frequency associated with the time

dependent current in Thorpe's study.

For the larger value of y - .5, the spreading of Fourier components dominates the

convergence due to refraction by the currents. This example resembles the Hartman result

more than the critical-layer interaction (for the times shown in the figure) because the energy is

not being concentrated at one depth. The intrinsic energy density remains small relative to its

initial value until t - T,, when convergence occurs.

As mentioned above, the basis for using ray theory in these examples is the assump-

tion that the wavefleld can be described locally by one value of K and w at each time; how-

ever, measurements suggest that the deep-ocean internal wave field more closely resembles the

Oseus" of surface waves more than the "swell" since many wavenumbers and frequencies exist at

each position. We must therefore deal with rays that start at the same location with different

wavenumbers, as pictured in the plots of figure 5.7, and with rays that arrive at the same
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position and time through different trajectories.

The quantitative analysis of a short-wave spectrum in inertial shears will not be con-

sidered here, except to mention that in treating a spectrum, it is convenient to introduce a spec-

tral density for action, which we denote by n (K,x,) to distinguish it from A (z.t), the action

density of a single wavetrain in physical space. The equation governing conservation of n is

(Holloway 1981)

n, + fl kjn-xj - fl.,11xk - 0  (5.29)

which reduces to (5.8) when

n(K,x,t) - A (x,t)8(K-K(x,) (5.30)

(U. Lerner, unpublished manuscript). The subscript j in (5.29) indicates a summation over the

components of K and x.

By regarding the phases of the short waves as random, the action and energy densities

in physical space may be written as

fn(K,x,)dK (5.31)

fn (k,x, ) n'(k,x, ) dK (5.32)

respectively, where n' is the intrinsic frequency. It is the value of the integrals in (5.31) and

(5.32) and not the spectral densities by themselves that should determine whether unstable

amplitudes are reached. The evaluation of these integrals would seem to be a necessary step

toward understanding the mechanisms by which internal waves dissipate.



CHAPTER 6

CONCLUSION

When the background current is an inertial oscillation, the process by which short

waves are focussed to high amplitudes differs in significant ways from the steady-shear case. As

the my tracing calculations of Chapter 5 emphasize, a critical-layer interaction offers only one

example of convergence, one in which refraction leads to a decrease in the intrinsic frequency

toward f and the group velocity toward zero. In inertial shears, other possibilities are equally

likely. The intrinsic frequency may be high or increasing, so that wave groups are accelerating

when convergence develops. Inertial shears also can leave the rays sharply focussed at depths

where 8 U/8z vanishes and at times when U is identically zero. The magnitude and sign of the

shear, therefore, provide little indication of the likeliness for short-wave convergence when

c , Uo (figure 5.4).

The results also differ from those of steady-shear analyses in that the condition

c 4 U0 does not guarantee that the waves will shortly attain high amplitudes or develop

unstable shears. This is due to the reversing nature of the inertial currents, both in space and

time, which can delay or prevent convergence and allow the short waves to persist for several

inertial periods without becoming unstable (figure 5.2). By contrast, instabilities arise within a

few Vaisala periods in the studies of Fritts (1978), Hartman (1975), and Thorpe (1981). Fritts

(1982) points out this difference between steady and time dependent currents.

The reversing currents also negate Hartman's mechanism of dissipation (shear instabil-

ity without an accompanying increase in E). However, short waves may induce instability

without reaching large amplitudes if they propagate into an inertial current that is by itself mar-

ginally stable.

The conditions that give rise to critical-layer interactions match those studied by

Thorpe (1981): a decelerating current coupled with a mean shear of the sign necessary to

decrease the intrinsic frequency of the short waves in the direction of propagation. This combi-

nation of deceleration and refraction leads to a rapid growth of the short-wave amplitudes.

Here again, though, differences appear in relation to steady shears, since wave groups with

phase speeds exceeding the mean-flow maximum by two or three times, and the local mean-

flow velocity by much more, are focussed to unstable amplitudes by the inertial currents.

These results indicate the difficulty in defining a critical-layer interaction quantitatively.

The criterion c - U, which sufficues in the Taylor-Goldstein model, is artificial in the present

context, because waves of higher phase speeds are similarly amplified by the currents. There is

41
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no obvious limit to the values of c or the intrinsic frequency w,' at the time of focussing that

can be used to distinguish the critical-layer interaction from other convergences. One possibil-

ity is to associate with critical layers all convergences with a decreasing w' along the ray (i.e. all

those falling in the hatched sections of figures 5.4 and 5.5), but this would include behavior

much different from the results of BB for the reasons mentioned above and in Chapter 5. To

avoid the difficulties in definition, and to designate all focussings induced by currents whether

associated with critical layers or not, we use the term refractive convergence.

The qualitative features of refractive convergence are shown schematically in figure

6.1. The arrows represent a pair of adjacent group velocity vectors, whose orientations change

through refraction by an inertial current. This example corresponds to the situation in figure

5.1, although the range of angles of the vectors relative to the vertical and relative to each

other is exaggerated for illustration purposes.

The vectors, which begin parallel, remain so in the second diagram of figure 6.1

(t - T/8). The action density stays approximately constant during this time interval (cf. figure

5.10, so the dynamics are similar to those predicted by Hartman (1975), not by the Taylor-

Goldstein model. Divergence begins thereafter and continues when the current vanishes at

t-T (again unlike the Taylor-Goldstein model). Convergence takes over after t - 'AT, inten-

sifying in the last diagram of the sequence at a level where the shear is negative.

Once underway, refractive convergence typically leads to sudden increases in E -

so sudden, in fact, that a dear distinction exists between those waves that reach high ampli-

tudes and those that do not. Because there are few intermediate cases, the findings are not sen-

sitive to the criterion for identifying a convergence event (page 25).

The calculations of Chapter 5 are based on ray theory. Chapters 3 and 4 are devoted to

assessing the errors in this approach. A comparison with solutions to the Taylor-Goldstein

equation finds partial reflection to be unimportant for waves with a Doppler-shifted phase speed

barely exceeding the mean flow maximum; however, WKB techniques perform poorly when the

curvature term U,/(c-U) dominates the others in the coefficient of the Taylor-Goldstein

equation. The solutions then resemble shear modes (solutions to the Rayleigh equation) rather

than internal wave modes, and the internal wave dispersion relation is of little use, even quali-

tatively. The example shown in figure (4.1) illustrates that a turning point can appear at a

depth where the ray equations predict a small and decreasing intrinsic frequency.

Chapter 4 finishes with a discussion of the inappropriateness of the Taylor-Goldstein

model for short waves in a inertial current. The reasons include the time dependence of the

shear and the nonzero vertical gradient in the Doppler-shifted frequency w that a time-

dependent shear induces.

l Z,



43

% %

I I% s #

3 !- 1 1 Ti
4 4 4

Figure 6.1. The process of refractive convergence. The illustration shows schematically the
changing orientation of a pair of adjacent group velocity vectors. The conditions correspond to
those depicted in figure 5.1. The lengths, angles, and vertical separation of the vectors are not
properly scaled. The horizontal separation need not be considered, jince the wave amplitudes
and menial current do not depend on horizontal position. The profiles of U are indicated by
dashed lines, and the time in inertial periods is given below each diagram.

The vectors begin parallel, diverge for times between T/8 and 3 T1/4, and converge for
later times. Convergence strengthens in the final diagram at a depth where the shear is nega-
tive.
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Near convergence zones, the equations fail because of the small-amplitude approxima-

tion. Numerical solutions to the nonlinear equations and laboratory experiments show over-

turning in the vicinity of the critical layer, but in a "noisy" ocean wave-wave interactions may

limit wave growth before the critical layer is reached. The conditions for triad instability, for

instance, may be realized before those for gravitational or shear instability. Holloway (1981,

1982) addresses these points and cautions against ignoring the nonlinear interactions of a ran-

dom wave field in critical-layer studies.

There are also linear processes to be examined that may affect the focussing of short-

wave energy. For example, it should be useful to analyze with the ray calculations a broad

banded, short-wave spectrum propagating through random, low-frequency shears.

The results presented here cover a very limited range of the numerous independent

variables, which include J, P, N/f, and the initial values of w', m, and &m/z. Although

critical-layer interactions similar to those studied by Thorpe (1981) can be identified in inertial

currents, these results show that convergence may develop in ways that do not resemble

critical-layer interactions at all. The calculations reveal the importance of the more general pro-

cess of refractive convergence, which operates under a broad range of conditions. Because of its

connection with dissipation, refractive convergence merits attention for the same reasons previ-

ously attached to critical layers by BB, Thorpe (1981), Hartman (1975), Fritts (1978, 1982),

Munk (1980) and others: to improve our understanding on the subjects of short-wave dynam-

ics, the internal-wave energy budget, and mixing processes in the deep-ocean.

i
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APPENDIX A.

THE REFLECTED AND TRANSMITTED WAVE AMPLITUDES

IN TERMS OF HEUN FUNCTIONS.

In chapter four, it is shown that the the solution corresponding to the reflected wave as

z - -o is expressed in terms of the Heun's function as

w, - F(c1,b;E, ,y,8; U1). (Al)

This is the solution in (4.14) about U, - 0 with zero-exponent. The solution with exponent

- 2i)& corresponds to the incident wave as z - -co and can be written in terms of Heun's

function using the transformation w2 - U1"21#' w1 . From Snow (1942),

2 - U2JF(c,b2;l+a-y,l+,-y,8; Uj) , (A2a)

where

b2- b - (1-Y)(8+C1(I+54----) . (A2b)

The solution belonging to the zero-exponent at U, - I in (4.14) corresponds to the

transmitted wave as z - +-. Transforming U, - 1-U, leads to the solution (Snow, page

123)

w3- - (A3)

To obtain the amplitudes of the reflected and transmitted waves, the solutions w, and

w2 must be related to the solution w3. For the Hypergeometric functions, these connection for-

mulae can be expressed in terms of gamma-functions, but for Heun's functions, it is necessary

to match the solutions and their derivatives at points between the singularities. The matching

point must be positioned at a distance less than (cl-l) away from U, - 1 to be within the

radius of convergence of w3. If we denote this position by x, it follows that

'R n W2W3 + W2w' 3  (A4)
W'IW3 + W1w'j

and

T- Iw w' - W2Wl I (A5)
w3 w', + w'3w x (

48
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where a prime indicates differentiation with respect to U, and the subscript x implies that all

functions are evaluated at U, - x.

The numerator in (AS) is the negative of the Wronskian for the two solutions w, and

w2, which we evaluate as

i.i'
ww' - w'w 2 - (wI w'2-w wz)u,,.oe- (A6)

where p is the coefficient of wu, term in Heun's equation (4.8). Substituting for p leaves

T -- [ 1=- L 1 (AT)U?0-U U! _) WwW'l+W'3Wl I"

The same procedure can be applied to the case involving a critical layer within the

shear region, although a branch cut must be chosen. A lengthy calculation, which will not be

given here, leads to the results presented in figure Al and in Munk (1980) for c-0. (Van

Duin & Kelder (1982) give a simpler technique for determining the reflection and transmission

coefients.) Waves are overreflected when JRI 2 > 1. which requires Ri < .13.

For values in the unstable region of the a-J plot of figure Al (Drazin, 1958), an

infinite, reflected, intrinsic energy density is obtained. This is the case of resonant

overreflection. According to linear theory, the shear layer radiates waves without being forced.
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Figure Al. Reflection from a critical layer. Plotted are the values of the fractional intrinsic
4 energy density reflected and transmitted through a mean shear flow, U-U 0 tanhpz as a func-

tion of minimum Richardson number J-NV2 /(8 2 (4). The plot is drawn for J-2a2, where
!-kp is the dimensionless; horizontal wavenumber. This corresponds to a wave packet travel-
ins at an inclination of 45* as z-d±oo. (RI az corresponds to the limiting case of vertical
group velocity as z-±ao.)



APPENDIX B.

CHANGES IN PACKET AMPLITUDE DUE TO DISPERSION AND GEOMETRICAL SPREADING.

Using ray theory, we derive equations that describe the dispersion and geometrical

spreading of a localized wave packet in a uniform medium of n dimensions. The derivation

generalizes the one presented in Section C of Chapter 5 and leads to the stationary-phase result

A - row (Bi)

for large times.

in a uniform medium, the ray equation for the action density A takes the form

d--- -A o (B2)
dt . 8k kj 8x

(Hayes, 1970), where the subscripted variables are components of K and x, repeated indices are

summed over all values, and the dispersion relation is

-(K(x)) (B3)

(For convenience in notation we do not use subscripts for partial derivatives in this appendix.)

To obtain 8k,/Oxj, we write

K - x - C86), (B4)

appropriate to a uniform medium, and define

a - Z - Cst (B5)

Differentiating (14) with respect to x leaves

8k, 8k, o_

SXJ On, Oxj

Ok, Oki, 2n s. (6)
"al On, Sa ,SOk, x

where Sk*Ia, is the value of Sk,/Oxi at : - 0. We rewrite (36) as
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Ok-I8+1 ::; 8ka - k; (37)

which in the long-time limit becomes

8k. 10k, 8 2fl 1 j 8k,
Oxj ap 8k 8k, t 8a (1S)

Multiplying (BS) by OacqiOk and using

8k, O,

leaves

8km 821- (80
Ox 8kOk. (BIQ)

We use the relation 8jj - n, where n is the number of spatial dimensions, and set q - j in

(BIO) to obtain

0kma 02fl - n (Bi 1)

Ox1 akj0k, t

substituting (BI) into the action equation (B2) gives

dA. _ (B12)dt t

or

AtM - constant , (B13)

which matches the stationary-phase result (BI).

We note the following:

(i) Equation (B7) applies to those components of K that lie in a direction in which the

medium is homogeneous, even if the medium is not homogeneous in all directions.

(ii) Not all initial conditions lead to the result given by (B13). If, in (B7),

2a k <0 , (B14)

Ok, k. act,

then the term in parentheses in (B7) can become zero, giving an infinite value for

Ok,1xj and for the action density. Physically, the Fourier components with slow group

Ir
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velocities precede those with faster group velocities at the initial time, and as the fast

waves overtake the slow ones, a caustic develops.

(i) We list here for use in Section C of Chapter 5 the components of 82fl/(8ki Okj). The

dispersion relation is

N~k .(kj +- Aj)N2 + M2f2 (815

0(k) I k? + ki + M2(B)

b (BI61

where K - (kj, k2, m) and

a a (k? + kj)N2 + m2f 2  (B17)

b E (k? + kj + M2) (B18)

Then for I - 1, 2,

80 - m2(N2 - fl) (a-'b-II){l - k,(3b_, + N2a-1) (B19)

M -m 2(N 2 - f 2)(ab)- 312 ktk 2(3a + bN2) (B20)
Oktk 2

820 - -mri k(N 2 - f)(a-b-1 2  2 - m 2(3b' + fla - )J , (B21)

with &2n/Sm2 given by (5.10).



APPENDIX C

WAKES AND MEAN FLOWS OF LOW-FREQUENCY INTERNAL-WAVE PACKETS'

A. Intuduction

The role of wave transience in affecting mean flows and mean profiles of temperature

and tracers is well-established, a prime example being the sudden stratospheric warming, where

growing planetary waves modify the temperature distribution by as much as 40°C and

decelerate upper level winds.

Transience is a marked feature of energetic, near-inertial oscillations in the ocean.

Although it is unlikely that they will cause ocean temperatures to increase by 40oC, these oscil-

lations could be very effective at inducing mean flows. If, as for high-frequency, plane internal

wave packets,

co (CD)

where i and jL are the Eulerian and Lagraniian horizontal mean velocities, respectively, E is
the intrinsic energy density (see equation (C16) and below), and c' is the horizontal, intrinsic

phase velocity, then for fixed horizontal wavelength, the generation of mean velocities would

be heavily dominated by low-frequency waves: in addition to the phase velocity appearing in
the denominator in (C1), energy spectra typically fall off as the inverse square of the frequency

and even faster near the inertial and tidal bands. A rough calculation using (C) and the obser-

vation that low-frequency waves are marginally stable (i.e. have a minimum Richardson

number approaching unity), gives mean-flow magnitudes of nearly half the orbital velocity of

the waves.

When Coriolis terms are important, however, mean flows can evolve differently. Here

mean-flow equations are derived for low-frequency internal wave packets. Of the cases con-

sidered, only when rotation is ignored does il or L equal E/c identically, and only when hor-

izontal dependence is ignored does an inertial wave appear in the wake of the packet, as

predicted by Hasselmann (1970) for a wave field that is statistically homogeneous in the hor-

izontal. These calculations supplement the related work of Andrews (1980), Bretherton (1%9),
Grimshaw (1975), and Hasselmann (1970).

*Rferencm we inludded at the end of this Appendix.
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It is assumed that the Vaisala frequency N is constant and that there is no background

current. For the upper thermocline, where low-frequency packets are most energetic and

identifiable, these am poor assumptions, but they help to isolate the dependence of mean-flow

evolution on wave frequency. The calculations can probably be extended to include variations

in the medium through a WKB analysis without altering the conclusions obtained below. We

also ignore ocean boundaries, which is reasonable for the scales to be considered: vertical

packet dimensions of a few hundred meters, implying horizontal wavelengths of roughly 5-20

kilometers, depending on frequency.

The equations to be solved are

u, + uVu + 2f1xu + -Vp + 2 - 0 (C2a)
PO

V-u - 0. (C2b)

The fluid is nondissipative, Boussinesq, and incompressible, 2fl - (0,0,j), where f is the iner-

tia frequency, assumed constant, and u - (u, v, w).

. amenflws

As waves propagate through a fluid, they induce stresses that can accelerate mean

motions. There are many examples with physical interpretations in the literature. Mathemati-

cally, a mean flow arises because a sinusoid is generally not an exact solution to the equations

of motion. If sinusoidal motion is assumed, the nonlinear terms generate harmonics and mean

quantities. Even in the special cases where sinusoidal motion is an exact solution (e.g. plane

internal-inertial gravity waves in a uniform, nondissipative, Boussinesq fluid) strictly sinusoidal

motion may not be consistent with the condition of no motion initially. For instance, a wave

packet with a slowly growing leading edge induces mean as well as orbital motion. Where the

amplitude of the wave packet is constant, the horizontal velocity is u - ,sin(K-x-wt) + 5,

where 9 is an 0(E2) constant. This is still an exact solution under the assumptions mentioned

above provided that w is the Doppler-shifted frequency, related to the intrinsic frequency w' by

a'+ Uk for k>0.

When rotation (and dissipation) can be ignored, net accelerations produced by the

leading edge of a wave packet are cancelled by decelerations in the trailing edge. The mean

flow returns to zero after the packet passes, although a net displacement of the fluid occurs if

the Lagrangian-mean flow is nonzero.

VP
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When rotation is important, the trailing edge may not decelerate the fluid back to zero

velocity because the mean motion, now affected by the Coriolis force, changes direction during

the passage of the packet. The same forces that set up the motion, therefore, may no longer

stop it. Instead, the system is left ringing at inertial frequency after the packet propagates away.

This is illustrated in the following example.

Solutions to (C2) are sought of the form

(u,v,w,p,G) - (u',v',w',p',9') + (,. (3)

The buoyancy parameter is 9 - gp'/po and a factor of l/po is included in the pressure variable

for simplicity in notation. The primed quantities are 0(E) and behave like sin(K-x- wt),

where K - (k,O,m). The barred quantities are obtained by an Eulerian average over phase and

are O(cl).

The 0(E) equations,

U', - fv' + P'x - 0 (C4)

v' + fu' + p'y - 0 (CS)

w', + 9' + p', - 0 (C6)

G', - N 2w' - 0 (C7)

U'., + VY + w, - 0, (C8)

yield the linear-theory results: the dispersion relationship

(-,2. /N+M2  (C9)

and the relationships

(UP, wP',9') i ' Wok i(N -. ')k NlkJ(,
,f)fm fm2 , M (CIO)

(Andrews, 1980).

The O(E2) equations describe the evolution of means and second harmonics. The

later component is eliminated by averaging, leaving

Jr U - + AX - - (u-h g (U") z (CI 1)

Vr + J'u + ir -u (v )  (C12)

-- -. 77
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ISF r + 0 + JA z- - WIX- A(W' 2)z (C13)

sJ r - N2 P - -JA (5;7'L) y (C14)

A(MX + iy + ;;Z) - 0. (CIS)

These equations are written in terms of the stretched variables X - x, T -A i (A << )
which vary by an 0(1) amount over the scales of the packet. The boundary condition specifies

that all quantities vanish as Z - o- (envisioning a packet with downward group velocity).

The O() equations have been used to eliminate products of quantities on the right-hand-side

of (CI 1)-(C15) which are out of phase. The mass source in the Lagrangian-mean continuity

equation (C1) does not appear for this problem until O(W).

Case (1) 8/X - 8/8 Y - 0, fp - 0(1)

By ignoring variations in X and Y, the continuity equation and boundary condition

force P to be zero everywhere. The buoyancy equation then gives 0 - 0, leaving the pressure

gradient term to balance the Reynolds stresses in the vertical momentum equation.

A high frequency approximation, w/f >> 1, reduces the equation for the x-

component of the psektdomomentum, P1, to

PT W--(U)x - (U-'i1 z (C16)

where to 0(2), P, - E/c' and £ - (uT + 7 + w-  + -'/N)/2, and c' - w'/k. The horizon-

tal momentum equations then become

AUr -v' - Air (C17)

J r + fU - 0 . (CIS)

At this stage we assume that the Coriolis terms and the acceleration terms are the

same order, i.e. that f.P - 0(1), where t-p is the time scale of the packet. (Since 7P >> l/W'

is necessary for scale separation, this assumption includes the high frequency approximation
leading to (C16)). The case of strong rotation, fr, >> I is considered in the next section.

Defining g - i + 'v, (C17) and (C18) combine to become

if* (C19)

which has the solution

, E - ,fei(/)re.-.i'(llrE ( )T. (C20)
C _- C
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The second term arises when f is nonzero and represents an inertial wave left in the wake of

the packet. Hasselmann (1970) obtains a similar solution for a random field of surface waves

or internal waves in shallow water. Related behavior illustrating that Rossby-wave packets

leave lower-frequency Rosby waves in their wake is shown in Rhines and Holland (1979).

It therefore appears that transient waves need not induce transient mean flows, even in

a nondissipative fluid. This conclusion follows more directly when the equations are rewritten

in Lagrangian-mean form:

_ fjL + P. -'()A X - J(A- r - Z

ish r (C21)

AMi + fiL + L r 0 (C22)

I,4 + jL + L Z ;( - x - U ) - ( -

- -&A3r (C23)

if#- NZWL -0 (C24)

JA(j + if + 4) - 0 (C25)

where (x,t) (%,C,7j) is the particle displacement, and the psuedomomemtum vector 0 has

components C(1,0,3). The Lagrangian mean, defined as

-- L g(x+ft) (C26)

for any quantity g, is an ensemble average over phase. It is then possible to define f such that

-0 identically (Andrews & McIntyre (1978)). Dependence on X and Y in (C21)-

(C25) has been included for later reference. Ignoring these dependences for now, the X-

momentum equation can be rewritten as

Ad'L  r - ./.ft.- 0, WC27)

which in turn can be rewritten as

S5L (11L -..- y) - 0

(Andrews & McIntyre (1978)). DL signifies the rate of change moving with the Lagrangian-

mean flow:
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-J iL- (C28)

If the Coriolis force leads to a net change in. y during the passage of the packet, uL st

remain nonzero after the packet propagates away..

Case (2) MIX - 8/8 Y - 0 fro >> I

The solution given in (C20) is derived assuming that the Coriolis terms are small but

nonzero. This requires

f/T L 22 2 f2 0(1) . (C29)

puffL/8 T P ~ L82 f

We identify rp - T/Is with the time scale of the packet. Let rp - 2irn/w' with n measuring

the number of wave periods required for the wave packet to reach maximum amplitude at a

fixed location. Then f7-, - 0() translates to w' - O(2vrnf). If n - 4, say, ,j' must be in

the range of 25f for the Coriolis and acceleration terms to be of the same order. Since 25f

corresponds to a wave period of less than one hour at midlatitudes, this division lies above the

frequency of the semidiurnal tide and tidal harmonic at six-hour period. The assumption

frp - 0(1) therefore excludes what is by far the most energetic part of the oceanic internal

wave spectrum. The amount that is excluded depends of course on n, but the point is that it is
2wnf/' and not f/' that measures the ratio of the Coriolis to acceleration terms in the mean

equations.

The approximate balance to lowest order is now between the Coriolis terms and the

radiation stresses, so that

L -_ A &t 7. (C30)

Pin (C31)

Because the mean motion is reduced to an O() quantity, the Stokes drift appears at the same

order

S is. (7-,7)z. -(C32)

More interestingly, iL and jL return to zero after the packet propagates away. If the mean

velocities are expanded in powers of I, inertial motion in the wake still does not appear, for at

all higher orders ;L and liL can be related to higher-order derivatives of , with respect to T.
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To see what has happened to the inertial moti6n, we can derive an exact solution for
;L , U + jrL analogous to (20) for j except that when written in terms of Lagrangian-mean

variables, the solution is valid for all frequencies: no high-frequency approximation is neces-

sary to replace the right hand sides of (C21) and (C23) with Pir and P3T respectively. (Pseu-

domomentum is not exactly conserved for localized wave packets since mean quantities depend

on position; however, corrections do not appear in the present context until 0(4 4).) We can

thus write

;L fe1t11)(Tr) ihrdT. (C33)
-m1

Since by assumption fr, >> 1, the phase of the exponential function in the integrand of

(C33) varies rapidly. An asymptotic expansion can then be found through an integration by

parts. Integrating N times leaves

ILv -_iA tr + + iNINfIr e /s' )(r- r) #dU. (C34)

The last integral represents the inertial motion left in the wake of the packet. It does not

appear in the asymptotic expansion because it is exponentially small as ;& - 0. (Using a

stationary-phase calculation and noticing that the phase function in the integral has no station-

ary points, the integral can be shown to be exponentially small as/ vanishes (Lighthill, 1978).)

Case (3) 0/IX. 8/8 Y - 0(1), f 7P >> I

Low-frequency, internal wave packets have horizontal scales that are much greater

than their vertical scales; however, unlike Hasselmann (1970), we consider horizontal varia-

tions because the ratio of the Reynolds stress terms in the x-momentum equation, for example,

is

( AX (C35)( E' z  k AX'

where AZ and AX are the vertical and horizontal scales of the packet. The ratio thus scales as

the number of horizontal wavelengths to the number of vertical wavelengths, not as the ratio of

absolute packet dimensions or wavenumbers. A similar argument applies to the radiation

stresses in the Lagrangian-mean equations.

Allowing for the packet to produce mean horizontal pressure gradients and allowing for

all the terms in the continuity equation leaves the system of equations given in (C21)-(C25).

,
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We write

iFL - Y(O) + m v(D + u2 v(2) + . (C36)

and similarly for all other mean quantities, and attempt an expansion which balances terms

geostrophically and hydrostatically at lowest order:

_fv(o) + PIo) - 0 (C37)

fNo) + Po. 0 (C38)

0(°) + p40) - 0 (C39)

u1°) + V °) - O. (C40)

A stream function, q(o), can be defined at this order, related to p(O) by

f -Vj*
(°) " V2p(°), (C41)

where Vj - a21aX2 + 81/a y2/ u(O) - _, j), and V(O) - q,49)

The evolution of the 0(0) quantities is obtained from the 0(") equations:

u4O) - fv('M + p) . P (C42)

V O) + fu(D + p D . 0 (C43)

w?0° + o() + P 1 - ,3T (C")

q?) - N2w (D . 0 (C45)

ull + 41) + %41) - 0 (C46)

These can be manipulated, using (C41), to obtain Poisson's equation for 4P(O)

'74() + 140 - -Ply(C47)

The formal solution to (C47) can be written in terms of a Green's function or derived using a
three-dimensional Fourier transform.

Suppose we choose a Gaussian packet envelope:

- exp(-a?(X-C, T)2 - a y 2 
- a(Z-C,3T")2  (C48)

II
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where C. -(CI,O, Cs3) is the group velocity. Symmetry considerations lead to

(0 41o) - W- p40)) Y-0 - 0, (C49)

so 7L is zero along the Y-centerline of the packet, where the wave amplitude reaches a max-

imum.

In the far-field, *(0) and p(O) decay as Ilr 2 multiplied by some angular dependence.

(An electromagnetic analogy is the potential due to a dipole source.) Consequently, no inertial

wake results. Viewed another way, (47) becomes Laplace's equation as T- o, X fixed,

which, because of the boundary conditions, cannot support motion.

As in Case (2) the inertial motion does not appear at higher order. The O(u 2) equa-

tions give

VW' ) + - - Pxr + NL P3ZT, (C50)

which also reduces to Laplace's equation after the packet propagates away. Similarly, the O(s3)

equations lead to

vrp (2) + 'Lipm-W jI+I+ . (CsI)

Since the structure of the equation at all higher orders is the same as (C51), the expansion

yields only decaying motion in the packet wake.

Again as in Case (2), the inertial motion may result from an expression which is

exponentially small as g - 0. There is at least one other possibility though: the inertial wake

may be limited to packets of infinite horizontal extent, i.e. the limit of 8/8X, 8/8 Y approaching

zero may be a singular one. The idea is that although the horizontal pressure gradients build

slowly in a long but finite packet, they can eventually reach an 0(0) magnitude. The dynamics

change when horizontal pressure gradients are important and inertial oscillations may disappear.

An exact solution to (C21)-(C25) would reveal whether the limit 8/X. 8/8 Y - 0 is

singular. A suggestion made by Glenn FlierI (personal communication) is to try a one-cycle

sinusoidal packet

- sink , X - (a-X-a 7), (C52)

for -it 4 X 4 r and P - 0 otherwise. This allows solutions to be obtained by assuming

behavior of the form AcosA + Bsin, for each of the mean variables. To meet the initial
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condition, solutions to the homogeneous equations are also needed. The effect of discontinui-

ties in ,irr at A, - -r,v requires assessment.

Another possibility is to ignore Z dependence. The equations then reduce to

/A -,L + -,, - iT (C53)

'if + f-I +U -- (C54)

,(uf + 70 - 0, (C55)

which can be combined to give the "wake-less" equation

WO - pl ; (C56)

however, if X and Y variations are ignored from the outset, so the forcing, PI r, builds in time

everywhere by the same amount, then the governing equation becomes the "wake-full" equa-

tion (C19). This model, although somewhat contrived, is an example illustrating the singular

limit associated with the neglect of horizontal dependences.

C. Numulerm media and chamhes in packet amplitude

Grimshaw (1975) derives a general system of mean flow equations that allows for vari-

ations in the Vasala frequency and for background shears. Even in a uniform medium, how-

ever, the wave induced mean flow will be affected by changes in packet amplitude resulting

from dispersion and geometrical spreading, especially when the propagation is three-

dimensional and especially when the waves are highly transient or localized and therefore

involve a broad (or at least non-narrow) range of frequencies and wavenumbers. A stationary-

phase calculation describes the attenuation of energy in a uniform medium, but this result can

also be obtained from the ray equations. The equation for action density along the ray (in one

dimension for now) is

d, -A (fl+flA* 8 k , (C57)

where w(x,t)- fl(k,x,t) is the dispersion relation and d/t - 8/8t + Cg 8/8X. Since

dk /d - 0

(kx),-o
k,- k(x-Ct))x - l+kk(k,),ot (C58)
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Substituting (C58) into (C57) and using f1 - 0, gives the stationary phase result that the

action density decays as lI/t as t - c.

It may seem surprising that although dispersion results from a spread in frequencies or

wavenumbers, bandwidth information does not enter directly into the equation for action den-

sity, as it does in the equation for action spectral density n(k,x, 6:

an + n Ak + 0nA (C59)

t + 8k dt 8x d(C

Here spectral content appears through the term 8n/Ok; recall, however, that the bandwidth

does not enter in the stationary phase calculation either, except at higher order when developed

as an asymptotic expansion (Felsen and Marcuvitz, 1973). Writing

e(xt) - jgke , (C60)

where *(k) - kx/t - w(k), we transform variables, using

32 - i(*(l,) - *(k)) (C61)

G(s) - g(k)-' - (k) 's (C62)

(Note that using L'Hopital's rule,

G(O) - (ko) 2' (C63)

provided *"(ko) is nonzero.) Equation (C60) then becomes

e- .'f (((o) + G'(o)s + G"(o)I + ... )e- 2'd. (C64)M 2

The stationary point is k0 , which satisfies '(ko) - 0, and a prime in (C63) denotes

differentiation with respect to s. The bandwidth information in G'(0), G"(0) . appears only

as a correction to the lowest-order solution.

The advantage of the ray equation (C57) over the method of stationary phase is that it

is easily extended to nonuniform media. Complications arise because in general k, is not

known analytically and because in three dimensions, nine equations (six of which are indepen-

dent) are required:

-VK -VK'flIKKVK - flx'VK- VK'flx x X (C65)(C65

V!
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(Hayes, 1970). Still the system of equations can be integrated numerically. As an approxima-

tion, it is probably justified to ignore horizontal variations in the Vaisala frequency and shear,

so that the horizontal wavenumbers are conserved, but the point here is that for localized pack-

ets, dispersion and geometrical spreading due to a spread in horizontal wavenumbers should not

be dismissed as unimportant. Its affect on packet amplitudes may match that produced by

refraction.

cmdusm
The character of the mean flow induced by an internal wave packet is sensitive to the

frequency of the waves and the dimensions of the packet.

When horizontal variations are neglected, high-frequency waves induce a mean flow

given by iiL - E/c, unless rotation is included. Then gL is given by (C20) and an inertial

wave oscillates in the wake of the packet. As the wave frequency decreases toward f, the mean

flow adjusts so as to move perpendicular to K at lowest order, moreover, in contrast to the

high-frequency case, gL vanishes whenever the packet amplitude levels off (see (C29) and

(C30)).

When horizontal dependences are included, thm lowest order, mean flow equations lead

to Poisson's equation for the pressure or stream function regardless of wave frequency.

Motions induced by low frequency packets balance hydrostatically and geostrophically. A ques-

tion suggested by these calculations is whether the limit 8/8X, 8/8 Y - 0 is a singular one, and

thus whether it is realistic to expect wakes with inertial oscillations.

Table I provides a summary of results.
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